A Review on Strengthening Steel Beams Using FRP under Fatigue

نویسندگان

  • Mohamed Kamruzzaman
  • Mohd Zamin Jumaat
  • N H Ramli Sulong
  • A B M Saiful Islam
چکیده

In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Design Model for Adhesive Joints Used to Bond Frp Laminates to Steel Beams

The strengthening and repair of existing structures using bonded carbon fiber reinforced polymer, CFRP, laminates has attracted a great deal of attention in the past two decades. Investigations clearly indicate the great potential of this method for restoring the capacity of corroded steel beams and improving their fatigue life. One important issue regarding the use of this technique in strengt...

متن کامل

Shear strengthening of reinforced concrete beams with CFRP

The current paper reviews existing design guidelines for strengthening beams in shear with carbon fibre reinforced polymer (CFRP) sheets and proposes a modification to Concrete Society Technical Report TR55. It goes on to present the results of an experimental programme which evaluated the contribution of CFRP sheets towards the shear strength of continuous reinforced concrete (RC) beams. A tot...

متن کامل

Cfrp Strands for Flexural Strengthening of Steel Bridges

This paper explores the use of Carbon fiber reinforced polymer (CFRP) material for strengthening of steel bridges. The research work includes an experimental program to study the effectiveness of using very small diameter CFRP strands, configured in a sheet format, for strengthening of steel structures. The experimental program includes scaled steel-concrete composite beams strengthened with th...

متن کامل

Fatigue-loading effect on RC beams strengthened with externally bonded FRP

Externally bonded carbon-epoxy fiber-reinforced polymers (CFRPs) have been widely used to restore or increase the capacities of reinforced concrete beams (Meier et al., 1992; Neale and Labossière, 1997; Varastehpour and Hamelin, 1997). A typical reinforced concrete bridge deck may experience up to 7x10 stress cycles during the course of a 120year life span (Barnes and Mays, 1999), while an over...

متن کامل

Numerical Simulation of Debonding Failure of Reinforced Concrete Beams Strengthened with Externally Bonded Frp

As the life age of the existing structures are required to meet the changing demands on civil infrastructures. So strengthening and retrofitting are required. Recently many techniques to strengthen the reinforced concrete beams in flexural by using fiber reinforced polymer (FRP) had appeared. The most famous technique among them is strengthening the (RC) beams with externally bonded FRP sheet t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014